Mark Scheme (Results) June 2008

GCE Mathematics (6684/01)

Edexcel Limited. Registered in England and Wales No. 4496750

https://xtremepape.rs/

A PEARSON COMPANY

June 2008 6684 Statistics S2 Mark Scheme

Question Number	Scheme				
1(a)	$\mathrm{E}(X) = 5$	B1			
	$Var(X) = \frac{1}{12}(10-0)^2$ or attempt to use $\int \frac{x^2}{10} dx - \mu^2$	M1			
	$= \frac{100}{12} = \frac{25}{3} = 8\frac{1}{3} = 8.3$ awrt 8.33	A1			
(b)	$P(X \le 2) = (2-0) \times \frac{1}{10} = \frac{1}{5} \text{ or } \frac{2}{10} \text{ or } 0.2$	(3) M1 A1 (2)			
(c)	$\left(\frac{1}{5}\right)^5 = 0.00032 \text{ or } \frac{1}{3125} \text{ or } 3.2 \times 10^{-4} \text{ o.e.}$	M1 A1 (2)			
(d)	P(X ≥ 8) or P(X > 8) P(X ≥ 8 X ≥ 5) = $\frac{P(X ≥ 8)}{P(X ≥ 5)}$ $\frac{2}{10}$	M1 M1			
	$=\frac{710}{5/10}$				
	$=\frac{2}{5}$	A1 (3)			
	alternative				
	remaining time ~ U[0,5] or U[5,10] $P(X \ge 3 \text{ or } 8) = \frac{2}{5}$	M1 M1 A1 (Total 10)			
	$\frac{\text{Notes}}{(a) \text{ B1 cao}}$ M1 using the correct formula $\frac{(a-b)^2}{12}$ and subst in 10 or 0				
	or for an attempt at the integration they must increase the power of x by 1 and subtract their $E(X)$ squared.				
	A1 cao (b) M1 for $P(X \le 2)$ or $P(X \le 2)$ A1 cao				
	(c) M1 (their b) 5 . If the answer is incorrect we must see this. No need to check with your calculator				
	A1 cao (d) writing $P(X \ge 8)$ (may use > sign). If they do not write $P(X \ge 8)$ then it must be clear from their working that they are finding it. 0.2 on its own with no working gets M0				
	M1 For attempting to use a correct conditional probability.				

```
A1 2/5
    Full marks for 2/5 on its own with no incorrect working
Alternative
M1 for P(X \ge 3) or P(X \ge 8) may use > sign M1 using either U[0,5] or U[5,10]
A1 2/5
```

Question Number	Scheme					
2	$X \sim B(100, 0.58)$ $Y \sim N (58, 24.36)$	B1 B1 B1				
	$[P(X > 50) = P(X \ge 51)]$ using 50.5 or 51.5 or 49.5 or 48.5	M1				
	$= P\left(z \ge \pm \left(\frac{50.5 - 58}{\sqrt{24.36}}\right)\right) \qquad \text{standardising } 50.5, 51, 51.5, 48.5, 49, 49.5 \text{ and their } \mu \text{ and } \sigma \text{ for M1}$	M1				
	$= P(z \ge -1.52)$	A1				
	= 0.9357	A1				
	$\frac{\text{alternative}}{X \sim B(100, 0.42)}$ Y ~ N (42, 24.36)	(7) B1 B1 B1				
	$[P(X < 50) = P(X \le 49)]$ using 50.5 or 51.5 or 49.5 or 48.5	M1				
	$= P\left(z \le \pm \left(\frac{49.5 - 42}{\sqrt{24.36}}\right)\right) \qquad \text{standardising } 50.5, 51, 51.5, 48.5, 49, 49.5 \text{ and their } \mu \text{ and } \sigma \text{ for M1}$	M1 A1				
	$= P(z \le 1.52)$	A 1				
-	- 0.9337	(Total 7)				
	Notes The first 3 marks may be given if the following figures are seen in the standardisation formula :- 58 or 42, 24.36 or $\sqrt{24.36}$ or $\sqrt{24.4}$ or awrt 4.94. Otherwise B1 normal B1 58 or 42 B1 24.36 M1 using 50.5 or 51.5 or 49.5 or 48.5. ignore the direction of the inequality. M1 standardising 50.5, 51, 51.5, 48.5, 49, 49.5 and their μ and σ . They may use $\sqrt{24}$ or $\sqrt{24.36}$ or $\sqrt{24.4}$ or awrt 4.94 for σ or the $\sqrt{6}$ ftheir variance. A1 \pm 1.52. may be awarded for $\pm \left(\frac{50.5-58}{\sqrt{24.36}}\right)$ or $\pm \left(\frac{49.5-42}{\sqrt{24.36}}\right)$ o.e. A1 awrt 0.936					

Question Number	Scheme					Ма	rks					
3(a)	X~Po (9)				may b	e implied	d by cale	culations	in part a	ı or b	M1	
	$P(X \le 3)$ $P(X \ge 16)$	= 0.0212 = 0.0220)									
	$\operatorname{CR} X \leq 3;$	$\cup X \ge$	16								A1; A1	(3)
(b)	P(rejecting	; Ho) = 0	.0212 + 0).0220							M1	
		= 0	.0432 or	0.0433							A1 cao	
												(2)
											Тс	otal 5
	Notes(a) M1 for 0.0 0.0 0.0 0.0 A1 forA1 forThey musttheir worki(b) if theyregions invalues forup. The modex20.0062A1 awaySpecial caIf you see0.0432 away	tusing Po 415, 0.9 correct $X \le 3$ or $X \ge 16$ of identify ing. Do n use 0.02 part a. If their critic ost comm 3 0.021 2 rt 0.0432 se 0.0432 / 0 ard M1 A	$\begin{array}{c} (9) - \text{ ot} \\ 780, 0.95 \\ \text{region.} \\ X < 4 \\ \text{ condervative} \\ X > 15 \\ \text{the critice} \\ 12 \\ \text{ and } 0.4 \\ 12 \\ 12 \\ 12 \\ 12 \\ 13 \\ 12 \\ 13 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14$	her value 585, 0.98 ondone al region t $P(X \le 3)$ 0220 the e not got ns.(both values for 5 0.115 7 3 and then the formula to the formula t	es you m (89,0.011 c1 or CR as at the o etc gets y can ga the corr smaller or lambd 14 0.958 5	ight see 1,0.0062 instead and and a and these a ect number than 0.05 a = 9 are 15 0.978 0 nd do souther	which in 2 or may of X not just h marks reports they 5) You m in this ta 16 0.988 9	ave then gardless must be able 17 0.994 7	 (9) are 0. ned by a n as part of the cr adding t to look t 	0550, t least of itical hese		

Question Number	Scheme	Marks
4(a)	<i>X</i> ~B(11000, 0.0005)	M1 A1 (2)
(b)	$E(X) = 11000 \times 0.0005 = 5.5$	B1
	Var $(X) = 11000 \times 0.0005 \times (1 - 0.0005)$ = 5.49725	B1 (2)
(c)	X ~ Po (5.5)	M1 A1
	$P(X \le 2) = 0.0884$	dM1 A1 (4)
		Total 8
	Notes	
	(a) M1 for Binomial,A1 fully correctThese cannot be awarded unless seen in part a	
	(b)B1 cao B1 also allow 5.50, 5.497, 5.4973, do not allow 5.5	
	 (c) M1 for Poisson A1 for using Po (5.5) M1 this is dependent on the previous M mark. It is for attempting to find P(X ≤ 2) A1 awrt 0.0884 	
	<u>Special case</u> If they use normal approximation they could get M0 A0 M1 A0 if they use 2.5 in their standardisation.	
	NB exact binomial is 0.0883	

Question Number		Scheme	Ма	rks
5(a)	<i>X</i> ~B(15, 0.5)		B1 B1	(2)
(b)	P (X=8) = P (X ≤ 8) – P($X \le 7$) or $\left(\frac{15!}{8!7!}(p)^8(1-p)^7\right)$	M1	(2)
	= 0.6964 - 0.5			
	= 0.1964	awrt 0.196	A1	(2)
(c)	$P(X \ge 4) = 1 - P(X \le 3)$		M1	
	= 1 - 0.0176			
	= 0.9824		A1	(2)
(d)	$H_o: p = 0.5$ $H_1: p > 0.5$		B1 B1	
	<i>X</i> ~B(15, 0.5)			
	$P(X \ge 13) = 1 - P(X \le 12)$	$[P(X \ge 12) = 1 - 0.9824 = 0.0176] $ att P(X ≥ 13)	M1	
	= 1 - 0.9963 = 0.0037	$P(X \ge 13) = 1 - 0.9963 = 0.0037$ CR X \ge 13 awrt 0.0037/ CR X \ge 13	A1	
	0.0037 < 0.01	$13 \ge 13$		
	Reject H ₀ or it is significant	t or a correct statement in context from their values	M1	
	There is sufficient evidence <u>favour of heads</u>	at the 1% significance level that the coin is <u>biased in</u>	A1	(6)
	Or There is evidence that Sues	belief is correct		
	Notes			
	(a) B1 for Binomial B1 for 15 and 0.5 must b This need not be in the fo	e in part a orm written		
	(b) M1 attempt to find P (X A1 awrt 0.196 Answer only full marks	f = 8) any method. Any value of p		
	(c) M1 for 1 - P ($X \le 3$). A1 awrt 0.982			

(d) B1 for correct H ₀ . must use p or π B1 for correct H ₁ must be one tail must use p or π M1 attempt to find P(X > 13) correctly. E g 1 – P(X<12)	
A1 correct probability or CR	
To get the next 2 marks the null hypothesis must state or imply that $(p) = 0.5$	
M1 for correct statement based on their probability or critical region or a correct contextualised statement that implies that. not just 13 is in the critical region.	
A1 This depends on their M1 being awarded for rejecting H ₀ . Conclusion in context. Must use the words biased in favour of heads or biased against tails or sues belief is correct . NB this is a B mark on EPEN.	
They may also attempt to find $P(X < 13) = 0.9963$ and compare with 0.99	

Question	Scheme				
Number					
6(a)	Calls occur singly Calls occur at a constant rate Calls occur independently or	e randomly.	any two of the 3 only need calls once	B1 B1	(2)
(b) (i)	$X \sim Po(4.5)$ P (X=5) = P (X ≤ 5) - P(= 0.7029 - 0.53	$X \le 4$) 21	used or seen in (i) or (ii)	M1 M1	
	= 0.1708			A1	(3)
(ii)	$P(X > 8) = 1 - P(X \le 8)$ = 1 - 0.9597			M1	
(c)	= 0.0403			AI	(2)
	$H_{o}: \lambda = 9 \ (\lambda = 18)$ $H_{1}: \lambda > 9 \ (\lambda > 18)$		may use λ or μ	B1	
	<i>X</i> ~Po (9)		may be implied	B1	
	$P(X \ge 14) = 1 - P(X \le 13)$ = 1 - 0.9261 = 0.0739	$[P(X \ge 14) = 1 - 0.9261 = 0.0]$ $P(X \ge 15) = 1 - 0.9585 = 0.0]$ $CR X \ge 15$	$\begin{array}{c} (0,739] & \text{att } P(X \ge 14) \\ (415) & \text{awrt } 0.0739 \end{array}$	M1 A1	
	0.0739 > 0.05	14 ≤ 15			
	Accept H ₀ . or it is not signif	icant or a correct statement in c	context from their values	M1	
	There is insufficient evidence agent has <u>increased</u> .	e to say that the <u>number of call</u>	ls per hour handled by the	A1	(6)
	Notes(a) B1 B1 They must use carsame reason.Award the first B1 if theSpecial caseif they don't puaward B0B1(b) correct answers only sco(i) M1 Po (4.5) may be implM1 for $P(X \le 5) - P(X)$ A1 only awrt 0.171	Ils at least once. Independently y only gain 1 mark. at in the word calls but write two re full marks ied by them using it in their cal $r \le 4$) or $\frac{e^{-\lambda}\lambda^5}{5!}$	v and randomly are the vo correct statements leulations in (i) or (ii)		

(ii) M1 for $1 - P(X \le 8)$ A1 only awrt 0.0403	
(c) B1 both . Must be one tail test. They may use λ or μ and either 9 or 1 match H ₀ and H ₁	18 and
M1 Po (9) may be implied by them using it in their calculations. M1 attempt to find $P(X \ge 14)$ eg $1 - P(X \le 13)$ or $1 - P(X < 14)$ A1 correct probability or CR	
To get the next2 marks the null hypothesis must state or imply that (λ) =	9 or 18
M1 for a correct statement based on their probability or critical region or a correct contextualised statement that implies that.	
 A1. This depends on their M1 being awarded for accepting H₀. Conclusion context. Must have <u>calls per hour</u> has <u>not increased</u>. Or the <u>rate of calls increased</u>. Any statement that has the word calls in and implies the rate not increase e.g. no evidence that the rate of calls handled has increased. Saying the number of calls has not increased gains A0 as it does not implied NB this is an A mark on EPEN 	on in has <u>not</u> sing ly rate
They may also attempt to find $P(X < 14) = 0.9261$ and compare with 0.9	5

Question Number	Scheme				
7(a)	$\int_{0}^{1} \frac{1}{2} x dx = \left[\frac{1}{4} x^{2}\right]_{0}^{1} = \frac{1}{4} \qquad \text{oe}$	attempt to integrate both parts	M1		
	$\int_{1}^{2} kx^{3} dx \left[\frac{1}{4}kx^{4}\right]_{1}^{2} = 4k - \frac{1}{4}k \text{oe}$	both answer correct	A1		
	$\frac{1}{4} + 4k - \frac{1}{4}k = 1$ 15k 3	adding two answers and putting = 1	dM1dep on previous M		
	$\frac{100}{4} = \frac{1}{4}$ $k = \frac{1}{5}$ *		A1 (4)		
(b)	$\int_{0}^{1} \frac{1}{2} x^{2} dx = \left[\frac{1}{6} x^{3}\right]_{0}^{1} = \frac{1}{6}$	attempt to integrate $xf(x)$ for one part	M1		
	$\int_{-\infty}^{2} \frac{1}{x^{4}} dx = \left[\frac{1}{1-x}x^{5}\right]^{2} = \frac{32}{1-x} - \frac{1}{1-x}$	1/6	A1		
	$J_1 5$ $[25]_1 25 25$ $= \frac{31}{25} \text{ or } 1.24$		A1		
	$E(X) = \frac{1}{6} + \frac{31}{25}$				
	$=\frac{211}{150}=1\frac{61}{150}=1.40^{\circ}$		A1 (4)		
(c)					
	$F(x) = \int_0^x \frac{1}{2} t dt (\text{for } 0 \le x \le 1)$	ignore limits for M	M1		
	$=\frac{1}{4}x^2$	must use limit of 0	A1		
	$F(x) = \int_{1}^{x} \frac{1}{5} t^{3} dt; + \int_{0}^{1} \frac{1}{2} t dt (\text{for } 1 < x \le 2)$	need limit of 1 and variable upper limit; need limit 0 and 1	M1; M1		
	$=\frac{1}{20}x^4+\frac{1}{5}$		A1		

Т

(d)	$F(x) \begin{cases} 0 & x < 0 \\ \frac{1}{4}x^2 & 0 \le x \le 1 \\ \frac{1}{20}x^4 + \frac{1}{5} & 1 < x \le 2 \\ 1 & x > 2 \end{cases}$ middle pair ends	B1 ft B1	(7)
(0)	F(m) = 0.5 $\frac{1}{20}m^4 + \frac{1}{5} = 0.5$ $m = \sqrt[4]{6}$ or 1.57 or awrt 1.57 either eq eq for their $1 \le x \le 2$	M1 A1ft A1	(3)
(e)	negative skew	B1	
	This depends on the previous B1 being awarded. One of the following statements which must be compatible with negative skew and their figures. If they use mode then they must have found a value for it Mean < Median Mean < mode Mean < median (< mode)	dB1	(2)
	Median < mode Sketch of the pdf.		
	Notes (a) M1 attempting to integrate both parts A1 both answers correct M1 dependent on the previous M being awarded adding the two answers together A1 cso		
	 (b) M1 attempting to use integral of x f(x) on one part A1 1/6 A1 31/25 A1 awrt 1.41 		
	(c) M1 Att to integrate $\frac{1}{2}t$ (they need to increase the power by 1). Ignore limits for method mark		
	A1 $\frac{1}{4}x^2$ allow use of t. must have used/implied use of limit of 0. This must be on its own without anything else added		
	M1 att to integrate $\int_{1}^{x} \frac{1}{5} t^{3} dt$ and correct limits.		

M1 $\int_{0}^{1} \frac{1}{2}t \, dt +$ Att to integrate using limits 0 and 1. no need to see them put 0 in .

they must add this to their $\int_1^x \frac{1}{5} t^3 dt$. may be given if they add 1/4

(Alternative method for these last two M marks)

M1 for att to $\int \frac{1}{5}t^3$ dt and putting + C M1 use of F(2) = 1 to find C

A1 $\frac{1}{20}x^4 + \frac{1}{5}$ must be correct

B1 middle pair followed through from their answers. condone them using < or \leq incorrectly they do not need to match up

B1 end pairs. condone them using < or \leq . They do not need to match up

NB if they show no working and just write down the distribution. If it is correct they get full marks. If it is incorrect then they cannot get marks for any incorrect part. So if 0 < x < 1 is correct they can get M1 A1 otherwise M0 A0. if 3 < x < 4 is correct they can get M1 A1 otherwise M0 A0. you cannot award B1ft if they show no working unless the middle parts are correct.

(d) M1 either of their
$$\frac{1}{4}x^2$$
 or $\frac{1}{20}x^4 + \frac{1}{5} = 0.5$
A1 for their F(X) 1A1 cao

If they add both their parts together and put = 0.5 they get M0 I they work out both parts separately and do not make the answer clear they can get M1 A1 A0

(e) B1 negative skew only

B1 Dependent on getting the previous B1. their reason must follow through from their figures.